Expression of glycerol-3-phosphate acyltransferase increases non-polar lipid accumulation in Nannochloropsis oceanica

Overview
TitleExpression of glycerol-3-phosphate acyltransferase increases non-polar lipid accumulation in Nannochloropsis oceanica
AuthorsSüdfeld C, Kiyani A, Wefelmeier K, Wijffels RH, Barbosa MJ, D'Adamo S
TypeJournal Article
Journal NameMicrobial cell factories
Volume22
Issue1
Year2023
Page(s)12
CitationSüdfeld C, Kiyani A, Wefelmeier K, Wijffels RH, Barbosa MJ, D'Adamo S. Expression of glycerol-3-phosphate acyltransferase increases non-polar lipid accumulation in Nannochloropsis oceanica. Microbial cell factories. 2023 Jan 16; 22(1):12.

Abstract

Microalgae are considered a suitable production platform for high-value lipids and oleochemicals. Several species including Nannochloropsis oceanica produce large amounts of essential [Formula: see text]-3 polyunsaturated fatty acids (PUFAs) which are integral components of food and feed and have been associated with health-promoting effects. N. oceanica can further accumulate high contents of non-polar lipids with chemical properties that render them a potential replacement for plant oils such as palm oil. However, biomass and lipid productivities obtained with microalgae need to be improved to reach commercial feasibility. Genetic engineering can improve biomass and lipid productivities, for instance by increasing carbon flux to lipids. Here, we report the overexpression of glycerol-3-phosphate acyltransferase (GPAT) in N. oceanica during favorable growth conditions as a strategy to increase non-polar lipid content. Transformants overproducing either an endogenous (NoGPAT) or a heterologous (Acutodesmus obliquus GPAT) GPAT enzyme targeted to the endoplasmic reticulum had up to 42% and 51% increased non-polar lipid contents, respectively, compared to the wild type. Biomass productivities of transformant strains were not substantially impaired, resulting in lipid productivities that were increased by up to 37% and 42% for NoGPAT and AoGPAT transformants, respectively. When exposed to nutrient stress, transformants and wild type had similar lipid contents, suggesting that GPAT enzyme exerts strong flux control on lipid synthesis in N. oceanica under favorable growth conditions. NoGPAT transformants further accumulated PUFAs in non-polar lipids, reaching a total of 6.8% PUFAs per biomass, an increase of 24% relative to the wild type. Overall, our results indicate that GPAT is an interesting target for engineering of lipid metabolism in microalgae, in order to improve non-polar lipid and PUFAs accumulation in microalgae.

Properties
Additional details for this publication include:
Property NameValue
Journal CountryEngland
Publication TypeJournal Article
Language Abbreng
LanguageEnglish
Copyright© 2023. The Author(s).
DOI10.1186/s12934-022-01987-y
Elocation10.1186/s12934-022-01987-y
PII12
Journal AbbreviationMicrob Cell Fact
Publication Date2023 Jan 16
eISSN1475-2859
ISSN1475-2859
Publication ModelElectronic
Cross References
This publication is also available in the following databases:
DatabaseAccession
PMID: PubMedPMID:36647076